Dirhodium(II)-catalysed intramolecular carbon-hydrogen insertion reaction of α-diazo ketones: stereoselective synthesis of 2,3-cis-2-alkyl-5-oxo-3-silyloxycyclopentanecarboxylates

Takayuki Yakura, Seiji Yamada, Yuka Kunimune, Akiharu Ueki and Masazumi Ikeda*

Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607, Japan

Abstract

Methyl 5-(tert-butyldimethylsilyloxy)-2-diazo-3-oxoheptanoate 2a, upon treatment with $1 \mathrm{~mol} \%$ of dirhodium(II) tetraacetate in dichloromethane under reflux, gives a mixture of methyl ($1 R^{*}, 2 R^{*}, 3 S^{*}$)-3-(tert-butyldimethylsilyloxy)-2-methyl-5-oxocyclopentanecarboxylate 3a and its ($1 S^{*}, 2 S^{*}, 3 S^{*}$) isomer 4a in a ratio of 79:21 and 87% combined yield. Similarly, 5-(tert-butyldimethylsilyloxy)-2-diazo-3-oxoalkanoates $2 \mathrm{c}-\mathrm{g}$ give 2,3-cis-2-alkyl- (or 2-phenyl)-3-(tert-butyldimethylsilyloxy)cyclopentanecarboxylates $3 \mathrm{c}-\mathrm{g}$ as the major products. The presence of both the keto and ester groups in the precursors was found to be essential for this site- and stereo-selective $\mathbf{C}-\mathrm{H}$ insertion to take place. A possible interpretation for the observed stereoselectivity is presented.

Introduction

Of a number of syntheses of the cyclopentane ring, ${ }^{1}$ the dirhodium(II)-catalysed intramolecular $\mathrm{C}-\mathrm{H}$ insertion reaction of α-diazo carbonyl compounds has proved to be one of the most effective and versatile for the construction of such functionalised compounds. ${ }^{2}$ This reaction is believed to proceed through a metal carbenoid, a species which can undergo, in addition to $\mathrm{C}-\mathrm{H}$ insertion, a wide range of synthetic transformations such as $\mathrm{X}-\mathrm{H}$ insertion ($\mathrm{X}=$ heteroatom), cyclopropanation, ylide formation and β-elimination. Therefore, in order to use the $\mathrm{C}-\mathrm{H}$ insertion reaction for the synthesis of the cyclopentane ring, the efficient and predictable control of site selectivity is required. A growing number of examples govern this selectivity by steric, ${ }^{3,4}$ conformational ${ }^{3}$ and electronic factors. ${ }^{3,5}$
The $\mathrm{Rh}^{\mathrm{II}}$-catalysed reactions of α-diazo ketones having oxygen substituents near the site of insertion usually give oxonium ylides ${ }^{6}$ or the products derived by insertion into the $\mathrm{C}-\mathrm{H}$ bond adjacent to the oxygen atom. ${ }^{7}$ Recently, we reported the site selective synthesis of 7-(tert-butyldimethylsilyloxy)-octahydrobenzo[b]furan-2-ones \dagger via the dirhodium(II)catalysed $\mathrm{C}-\mathrm{H}$ insertion reaction of 2-TBDMSoxycyclohexyl diazoacetoacetates. ${ }^{8}$ This result is attributed, at least in part, to the reduction of the reactivities of the oxygen atom and its adjacent $\mathrm{C}-\mathrm{H}$ bond by the steric bulkiness of the TBDMSoxy group. As an extension of this TBDMSoxy group-controlled site selective reaction, we have now examined the reactions of 5 -silyloxy-2-diazo-3-oxoalkanoates $\mathbf{2 a - g}$ and found that the 5-TBDMSoxy derivatives 2a,c-g gave the 2,3-cis-2-alkyl- (or 2-phenyl)-3-TBDMSoxy-5-oxocyclopentanecarboxylates 3a,c-g with high site- and stereo-selectivity. ${ }^{9}$

Results and discussion

The precursors $\mathbf{2 a - g}$ were easily prepared by the diazo transfer reaction of the β-keto esters $\mathbf{1 a - g}$, which, in turn, were synthesised by the reaction of an appropriate aldehyde and diketene in the presence of titanium(Iv) chloride ${ }^{10}$ followed by O-silylation of the resulting 5 -hydroxy-3-oxoalkanoates.

A solution of 2a in dichloromethane was heated with $1 \mathrm{~mol} \%$ of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ under reflux for 15 min . After evaporation of the

[^0]

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, then $\mathrm{MeOH},-20$ to $-10^{\circ} \mathrm{C}$; ii, TBDMSCl or TBDPSCl, imidazole, DMF, room temp.; iii, $\mathrm{TsN}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}$, room temp.; iv, $1 \mathrm{~mol} \%$ of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux; v, DMAP, toluene $-\mathrm{H}_{2} \mathrm{O}, 90^{\circ} \mathrm{C}$; vi, $\mathrm{Me}_{2} \mathrm{Cu}-$ $\mathrm{Li}, \mathrm{Et}_{2} \mathrm{O},-70^{\circ} \mathrm{C}$
solvent, the crude material was chromatographed on silica gel to give the 2-oxocyclopentanecarboxylates 3a and $\mathbf{4 a}$ in 87% combined yield and in a ratio of $79: 21$ (determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy). Careful chromatography on silica gel gave pure samples of $\mathbf{3 a}$ and $\mathbf{4 a}$. The structure and stereochemistry of 3a and 4a were confirmed by a combination of spectroscopic and chemical evidence. The large J value between $\mathrm{H}-1$ and $\mathrm{H}-2$ in both isomers (12.2 Hz for $\mathbf{3 a}$ and 11.9 Hz for $\mathbf{4 a}$) showed the trans relationship. ${ }^{3,11}$ Treatment of both 3a and $\mathbf{4 a}$ with 4-dimethylaminopyridine (DMAP) in toluene in the presence

Table 1 Dirhodium(II)-catalysed intramolecular C-H insertion reactions of $\mathbf{2 a - g}$

Entry	Starting material	Solvent	Reaction temp.	Reaction time (min)	Yield (\%) of $\mathbf{3}$ and $\mathbf{4}^{a}$
1	2a	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	15	$87(79: 21)^{b}$
2	2a	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	90	76 (75:25)
3	2a	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-20^{\circ} \mathrm{C}$	Overnight	$48(79: 21)$
4	2a	benzene	RT	6.5 h	15 (73:27)
5	2b	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	15	83 (57:43)
6	2c	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	15	74 (78:22)
7	2d	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	15	74 (80:20)
8	2e	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	15	75 (90:10)
9	2 f	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	15	$39(83: 17)$
10	2g	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	15	$36(70: 30)$

${ }^{a}$ The values in parentheses refer to the ratio of $\mathbf{3}$ and $4 .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
of water at $90^{\circ} \mathrm{C}^{12}$ gave the cyclopentanones $5(66 \%)$ and $\mathbf{6}$ (62%), respectively. The trans-stereochemistry of 6 was confirmed by direct comparison with an authentic sample prepared by the stereoselective methylation ${ }^{13}$ of 4 -(TBDMSoxy)-cyclopent-2-enone 7^{14} with lithium dimethylcuprate, thereby confirming the stereochemistry of $\mathbf{3 a}$ and $\mathbf{4 a}$ to be 1,2 -trans-2,3-cis and 1,2-trans-2,3-trans, respectively.

When the reaction of $\mathbf{2 a}$ was carried out at room temperature or at $-20^{\circ} \mathrm{C}$, the yield decreased to 76 and 48%, respectively (entries 2 and 3). Replacement of the solvent with benzene gave a poor yield (15%) of $\mathbf{3 a}$ and $\mathbf{4 a}$ (entry 4). The more bulky tertbutyldiphenylsilyloxy congener $\mathbf{2 b}$ afforded $\mathbf{3 b}$ and $\mathbf{4 b}$ in satisfactory yield (83% combined yield) but poor stereoselectivity (57:43) (entry 5). The derivatives having other protecting groups such as trimethylsilyloxy, ethoxyethyloxy, and pivaloyloxy groups instead of the TBDMSoxy group of 2a gave complex mixtures.

We next investigated the reaction of the other α-diazo- β-keto esters $\mathbf{2 c - g}$. The results are summarised in Table 1. Compounds $2 \mathbf{c}-\mathbf{g}$, upon treatment with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ in dichloromethane under reflux, gave also the corresponding 2,3-cis isomers $\mathbf{3 c - g}$ as the major products (entries 6-10), although the yields of $\mathbf{3 f}, \mathbf{g}$ were relatively low (entries 9 and 10). The stereochemistries of the major isomers $3 \mathbf{c}-\mathbf{g}$ were determined by a comparison of the coupling constants of $\mathrm{H}-1$ and $\mathrm{H}-3\left(J_{1,2} 11.3-12.7\right.$ and $J_{3,4}$ $2.9-3.9 \mathrm{~Hz}$) in the ${ }^{1} \mathrm{H}$ NMR spectra with those of $\mathbf{3 a}\left(J_{1,2} 12.2\right.$ and $J_{3,4} 3.9 \mathrm{~Hz}$).

In order to determine the role played by the two carbonyl groups of α-diazo- β-keto esters $2 \mathbf{a}, \mathbf{c}-\mathbf{g}$ in the stereoselective formation of the cyclopentanones, the diazo ketone $\mathbf{8}$ and the diazo ester 9 were prepared and treated with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ in dichloromethane. Compound $\mathbf{8}$ gave the corresponding $\mathrm{C}-\mathrm{H}$ insertion products 5 and $\mathbf{6}$ in lower yield (66%) and poor stereoselectivity (cis: trans $=56: 44$), while compound 9 gave the (Z)α, β-unsaturated ester 10 in 62% yield. The Z-stereochemistry of the double bond in $\mathbf{1 0}$ was assigned on the basis of the coupling constant ($J 11.5 \mathrm{~Hz}$) between the two olefinic protons in the ${ }^{1} \mathrm{H}$ NMR spectrum. The formation of $\mathbf{1 0}$ is rationalised in terms of β-elimination from the rhodium carbenoid intermediate. ${ }^{5 e, 15}$ These results clearly indicate that the presence of both the keto and ester groups are essential for the stereoselective cyclopentanone formation.

Based on a documented example of the reaction of methyl 2-diazo-4-benzyloxy-3-oxobutanoate with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ which produces the less stable 1,2-cis-5-oxo-2-phenyl-3-oxolanecarboxylate as a single isomer, ${ }^{16}$ it was suggested that the 1,2 -trans isomer 3a could be formed by isomerisation of the initially formed 1,2-cis isomer during silica gel chromatography. To confirm this possibility, we examined the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction products of 2a before treatment with silica gel. The ${ }^{1} \mathrm{H}$ NMR spectrum revealed a new doublet $(J 9.0 \mathrm{~Hz})$ due to $\mathrm{H}-1$ at $\delta 3.22$ in addition to two doublets for $\mathbf{3 a}$ and $\mathbf{4 a}$ at

Fig. 1

Scheme 2 Reagents and conditions: i, $1 \mathrm{~mol} \%$ of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux; ii, $1 \mathrm{~mol} \%$ of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp.
$\delta 3.13(J 12.0 \mathrm{~Hz})$ and $\delta 2.84(J 12.0 \mathrm{~Hz})$, respectively, in a ratio of $52: 23: 25$. After passage of the product through a silica gel column, the signal at $\delta 3.22$ completely disappeared. The spatial relationship between the substituents at $\mathrm{C}-1$ and $\mathrm{C}-2$ of the new isomer was assigned as cis on the basis of its smaller J value compared with the corresponding values for $\mathbf{3 a}$ and $\mathbf{4 a}$. These observations revealed that the major reaction pathway for the formation of 3a would involve the initial formation of the 1,2-cis-2,3-cis isomer 11 which undergoes isomerisation to the 1,2-trans-2,3-cis isomer $\mathbf{3 a}$ on silica gel.
The preference for the cis-insertion products with a pendent silyloxy group is striking. Clearly, the $\mathrm{C}-\mathrm{H}$ insertion which leads to the cis product is more favourable than the diastereotopic $\mathrm{C}-\mathrm{H}$ insertion which leads to the trans product. Considering the observation of Taber and Ruckle ${ }^{3,17}$ that the $\mathrm{Rh}^{\mathrm{II}}$ catalysed cyclisation of methyl 2-diazo-3-oxo-5-phenylheptanoate gives predominantly methyl 1,2-trans-2,3-trans-2-methyl-5-oxo-3-phenylcyclopentanecarboxylate, this is not a steric influence from the pendent silyloxy group, but may likely be electronic in nature. One possible rationalisation would involve the formation of a cyclic transition state $\mathbf{A},{ }^{5 d, 18}$ in which both bulky dirhodium complex and the R^{2} group occupy pseudoequatorial positions and the TBDMSoxy and ester groups pseudoaxial positions. Such axial preference of the silyloxy group has been reported in 3- and 4-oxygen substituted cyclohexanones and cyclohexane. ${ }^{19}$ It is likely that the transition state \mathbf{A} is further stabilised by a favourable electronic interaction between the pseudoaxial ether oxygen atom and pseudoaxial ester carbonyl groups. In this transition state that leads to the all-cis product, the $\mathrm{C}-\mathrm{OTBDMS}$ bond and $\mathrm{C}-\mathrm{H}_{\mathrm{a}}$ are orthogonal, minimising the electron-withdrawing effect of the oxygen and making H_{a} more reactive than H_{b} in which there can be good overlap with the electron-withdrawing oxygen. Isomerisation of the 1,2 -cis isomer $\mathbf{1 1}$ on silica gel leads to the more stable 1,2-trans isomer 3a.

In summary, this study shows that dirhodium(II)-catalysed intramolecular C-H insertion of the 5-(TBDMSoxy)-2-diazo-3-oxoalkanoates 2a,c-g gives the 1,2-trans-2,3-cis-2-alkyl- (or 2-phenyl)-3-(TBDMSoxy)-5-oxocyclopentanecarboxylates 3a, $\mathbf{c - g}$ as the major products. The presence of both the keto and ester groups in the precursors was essential for this site- and stereo-selective $\mathrm{C}-\mathrm{H}$ insertion reaction to take place. It was suggested that the major reaction course would involve the initial formation of the all-cis isomers, which undergo isomerisation to the more stable 1,2-trans isomers on silica gel.

Experimental

Mps are uncorrected. IR spectra were recorded on a JASCO IR-1 spectrophotometer for solutions in $\mathrm{CCl}_{4} .{ }^{1} \mathrm{H}$ NMR spectra (300 MHz) and ${ }^{13} \mathrm{C}$ NMR spectra $(75.4 \mathrm{MHz}$) were determined with a Varian XL-300 spectrometer for solutions in CDCl_{3}. δ Values quoted are relative to tetramethylsilane, and J values are given in Hz . All ${ }^{13} \mathrm{C}$ NMR spectra were determined with complete proton decoupling. Exact mass determinations were obtained on a JEOL JMS-SX 102A instrument at 20 eV . Column chromatography was performed on silica gel $60 \mathrm{PF}_{254}$ (Nacalai Tesque, Inc.) under pressure.

General procedure for the preparation of methyl 5-silyloxy-3oxoalkanoates $1 \mathrm{a}-\mathrm{g}$

Following the method reported by Izawa and Mukaiyama, ${ }^{10}$ titanium(IV) chloride ($3 \mathrm{~mol} \mathrm{~cm}^{-3}$ solution in dichloromethane; $8 \mathrm{~cm}^{3}, 24 \mathrm{mmol}$) was added to a solution of an appropriate aldehyde (20 mmol) and diketene ($3.36 \mathrm{~g}, 40 \mathrm{mmol}$) in dichloromethane ($45 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere, and the reaction mixture was stirred for 5 min . After this, absolute methanol $\left(20 \mathrm{~cm}^{3}\right)$ was added to the mixture which, after being stirred for 30 min at -20 to $-10^{\circ} \mathrm{C}$, was poured into icecooled 45% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}\left(12 \mathrm{~cm}^{3}\right)$. The precipitated inorganic material was filtered off and the organic layer was separated. The aqueous layer was further extracted with diethyl ether after which the combined organic layer and extracts were washed with sat. aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexaneAcOEt (3:1)] to give crude methyl 5-hydroxy-3-oxoalkanoate as a colourless oil, which was treated with tert-butyldimethylchlorosilane ($1.43 \mathrm{~g}, 9.47 \mathrm{mmol}$) (for $\mathbf{1 a , c} \mathbf{c} \mathbf{g}$) or tert-butyldiphenylchlorosilane ($2.60 \mathrm{~g}, 9.47 \mathrm{mmol}$) (for $\mathbf{1 b}$) and imidazole $(1.34 \mathrm{~g}, 19.7 \mathrm{mmol})$ in dimethylformamide $\left(40 \mathrm{~cm}^{3}\right)$ at room temperature. The mixture was stirred overnight and then diluted with water $\left(30 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt ($50: 1$)]. The following compounds were thus obtained as a mixture of the keto and enol forms.

Methyl 5-(tert-butyldimethylsilyloxy)-3-oxoheptanoate 1a. Yield 22\% from propanal, as an oil (Found: C, 58.3; H, 10.0. $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}$ requires C, 58.3; H, 9.8%); $v_{\text {max }} / \mathrm{cm}^{-1} 1740,1720$, 1650 and $1630 ; \delta_{\mathrm{H}} 0.01(1 / 6 \times 3 \mathrm{H}, \mathrm{s}$, SiMe of enol form), 0.03 $(5 / 6 \times 3 \mathrm{H}, \mathrm{s}$, SiMe of keto form), $0.04(1 / 6 \times 3 \mathrm{H}, \mathrm{s}$, SiMe of enol form), $0.06(5 / 6 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$ of keto form), $0.86(1 / 6 \times 9$ $\mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}$ of enol form), $0.87\left(5 / 6 \times 9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right.$ of keto form), $0.88\left(3 \mathrm{H}, \mathrm{t}, J 7.4\right.$, Me), 1.43-1.58 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $2.25-$ $2.32\left(1 / 6 \times 2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right.$ of enol form), $2.59(5 / 6 \times 1 \mathrm{H}$, dd, $J 15.3$ and 5.0 , one of $4-\mathrm{H}_{2}$ of keto form), $2.70(5 / 6 \times 1 \mathrm{H}$, dd, $J 15.3$ and 7.0, one of $4-\mathrm{H}_{2}$ of keto form), 3.48 and $3.52(5 / 6 \times 1$ H each, $\mathrm{ABq}, J 15.8,2-\mathrm{H}_{2}$ of keto form), $3.73(1 / 6 \times 3 \mathrm{H}$, s, OMe of enol form), $3.74(5 / 6 \times 3 \mathrm{H}, \mathrm{s}$, OMe of keto form), 3.93-4.02 ($1 / 6 \times 1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ of enol form), 4.05-4.15 (5/6 $\times 1$ $\mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ of keto form) and $5.02(1 / 5 \times 1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$ of enol form).

Methyl 5-(tert-butyldiphenylsilyloxy)-3-oxoheptanoate 1b. Yield 22% from propanal, as an oil (Found: $\mathrm{M}+\mathrm{H}^{+}, 413.2157$. $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{4}$ Si requires $M, 413.2148$); $v_{\text {max }} / \mathrm{cm}^{-1} 1750,1720,1660$ and $1630 ; \delta_{\mathrm{H}}$ for the keto form $0.77(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Me}), 1.03$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.40-1.55\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.64(2 \mathrm{H}, \mathrm{d}, J 5.9$, $\left.4-\mathrm{H}_{2}\right) 3.29$ and $3.35\left(1 \mathrm{H}\right.$ each, ABq. $\left.J 15.7,2-\mathrm{H}_{2}\right), 3.68(3 \mathrm{H}, \mathrm{s}$, OMe), 4.12-4.21 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.30-7.45(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.65-7.75 (4 H, m, ArH).

Methyl 5-(tert-butyldimethylsilyloxy)-3-oxodecanoate 1c. Yield 11% from hexanal, as an oil (Found: C, 61.7; H, 10.5. $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}$ requires C, $61.8 ; \mathrm{H}, 10.4 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1740,1720$, 1650 and $1630 ; \delta_{\mathrm{H}}$ for the keto form $0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.06$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.88(3 \mathrm{H}, \mathrm{t}, J 6.4, \mathrm{Me})$, $1.20-1.50\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 2.58(1 \mathrm{H}, \mathrm{dd}, J 15.3$ and 4.9 , one
of $\left.4-\mathrm{H}_{2}\right), 2.69\left(1 \mathrm{H}, \mathrm{dd}, J 15.3\right.$ and 7.0 , one of $\left.4-\mathrm{H}_{2}\right), 3.45$ and 3.52 (1 H each, $\mathrm{ABq}, J 15.7,2-\mathrm{H}_{2}$), $3.73(3 \mathrm{H}, \mathrm{OMe})$ and $4.09-$ 4.19 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$).

Methyl 5-(tert-butyldimethylsilyloxy)-3-oxonon-8-enoate 1d. Yield 16% from pent-4-enal, as an oil (Found: C, 61.5; H, 9.9. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}$ requires $\left.\mathrm{C}, 61.1 ; \mathrm{H}, 9.6 \%\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1750,1720$, 1660 and $1630 ; \delta_{\mathrm{H}}$ for the keto form $0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.07$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right)$, $1.52-1.65\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, 2.03-2.15 ($2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}$), $2.62(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and 5.2 , one of $\left.4-\mathrm{H}_{2}\right), 2.72\left(1 \mathrm{H}, \mathrm{dd}, J 15.6\right.$ and 6.7 , one of $\left.4-\mathrm{H}_{2}\right), 3.45$ and 3.52 (1 H each, ABq, $J 15.1,2-\mathrm{H}_{2}$), $3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.19(1 \mathrm{H}$, quintet, $J 6.0,5-\mathrm{H}), 4.93-5.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $5.72-5.88$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$).

Methyl 5-(tert-butyldimethylsilyloxy)-7-methyl-3-oxooctanoate 1e. Yield 25% from 3-methylbutanal, as an oil (Found: C, $60.6 ; \mathrm{H}, 10.3 . \mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{4}$ Si requires C, $60.7 ; \mathrm{H}, 10.2 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1750,1720,1660$ and $1630 ; \delta_{\mathrm{H}}$ for the keto form $0.03(3 \mathrm{H}, \mathrm{s}$, SiMe), $0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.87(3 \mathrm{H}, \mathrm{t}$, $J 6.6, \mathrm{Me}), 0.89(3 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{Me}), 1.22-1.43\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, 1.54-1.73 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.60(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and 5.4 , one of $\left.4-\mathrm{H}_{2}\right), 2.67\left(1 \mathrm{H}, \mathrm{dd}, J 15.8\right.$ and 6.3 , one of $\left.4-\mathrm{H}_{2}\right), 3.46$ and 3.51 (1 H each, ABq, $J 15.1,2-\mathrm{H}_{2}$), $3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $4.14-4.24$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$).
Methyl 5-(tert-butyldimethylsilyloxy)-3-oxo-7-phenylheptanoate 1f. Yield 22% from 3-phenylpropanal, as an oil (Found: $\mathrm{M}+\mathrm{H}^{+} 365.2154 . \mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}$ requires $\left.M, 365.2148\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 1740, 1730, 1660 and $1630 ; \delta_{\mathrm{H}}$ for the keto form $0.03(3 \mathrm{H}, \mathrm{s}$, SiMe), 0.08 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.89 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}$), 1.70-1.90 $\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.60-2.82\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right.$ and $\left.7-\mathrm{H}_{2}\right), 3.45$ and 3.51 (1 H each, ABq, $J 15.7,2-\mathrm{H}_{2}$), 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.19-$ $4.27(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $7.15-7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Methyl 5-(tert-butyldimethylsilyloxy)-3-oxo-6-phenylhexanoate 1g. Yield 11% from phenylacetaldehyde, as an oil (Found: $\mathrm{M}+\mathrm{H}^{+}$351.2001. $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{4}$ Si requires $M, 351.1991$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1750,1720,1660$ and $1630 ; \delta_{\mathrm{H}}$ for the keto form $-0.10(3 \mathrm{H}, \mathrm{s}$, SiMe), $-0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 2.56(1 \mathrm{H}$, dd, $J 15.9$ and 5.4 , one of $\left.4-\mathrm{H}_{2}\right), 2.67(1 \mathrm{H}$, dd, $J 15.9$ and 6.5 , one of $4-\mathrm{H}_{2}$), $2.75-2.80\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.44\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}_{2}\right), 3.71$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.31-4.41(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $7.15-7.35(5 \mathrm{H}, \mathrm{m}$, ArH).

General procedure for the preparation of methyl 5-(tert-butyl-dimethylsilyloxy)-2-diazo-3-oxoalkanoates 2a-g

A solution of $\mathbf{1}(4.22 \mathrm{mmol})$, triethylamine $(854 \mathrm{mg}, 8.44$ mmol), and toluene- p-sulfonyl azide ($997 \mathrm{mg}, 5.06 \mathrm{mmol}$) in acetonitrile ($40 \mathrm{~cm}^{3}$) was stirred at room temperature for 5 h and then diluted with diethyl ether ($50 \mathrm{~cm}^{3}$). The mixture was then washed with 9% aq. $\mathrm{KOH}\left(10 \mathrm{~cm}^{3}\right)$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt ($50: 1$)]. The following compounds were thus obtained.

Methyl 5-(tert-butyldimethylsilyloxy)-2-diazo-3-oxoheptanoate 2a. Yield 100%, as a pale yellow oil (Found: C, 53.7; H, 8.4; $\mathrm{N}, 9.1 . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$ requires C, $\left.53.5 ; \mathrm{H}, 8.3 ; \mathrm{N}, 8.9 \%\right) ; v_{\text {max }} /$ $\mathrm{cm}^{-1} 2140,1720$ and $1660 ; \delta_{\mathrm{H}}-0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.03(3 \mathrm{H}, \mathrm{s}$, SiMe), 0.84 (9 H, s, SiCMe_{3}), 0.89 ($3 \mathrm{H}, \mathrm{t}, J 7.4$, Me), $1.45-1.58$ $\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.83\left(1 \mathrm{H}, \mathrm{dd}, J 15.0\right.$ and 5.0 , one of $\left.4-\mathrm{H}_{2}\right), 3.15$ $\left(1 \mathrm{H}, \mathrm{dd}, J 15.0\right.$ and 7.6 , one of $\left.4-\mathrm{H}_{2}\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and 4.18 ($1 \mathrm{H}, \mathrm{dq}, J 8.9$ and $5.1,5-\mathrm{H})$.

Methyl 5-(tert-butyldiphenylsilyloxy)-2-diazo-3-oxoheptanoate 2b. Yield 91%, as a pale yellow oil (Found: $\mathrm{M}+\mathrm{H}^{+}$ 439.2068. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}$ Si requires $M, 439.2053$); $v_{\text {max }} / \mathrm{cm}^{-1} 2140$, 1725 and $1660 ; \delta_{\mathrm{H}} 0.81$ ($3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Me}$), 1.02 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}$), $1.46-1.58\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.90(1 \mathrm{H}, \mathrm{dd}, J 15.3$ and 4.7 , one of $\left.4-\mathrm{H}_{2}\right), 3.13\left(1 \mathrm{H}, \mathrm{dd}, J 15.3\right.$ and 7.7 , one of $\left.4-\mathrm{H}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}$, OMe), 4.24-4.34 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.31-7.45(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.63-7.74 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Methyl 5-(tert-butyldimethylsilyloxy)-2-diazo-3-oxodecanoate 2c. Yield 100%, as a pale yellow oil (Found: C, 57.5; H, 9.2; N, 7.9. $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}$ Si requires C, $\left.57.3 ; \mathrm{H}, 9.05 ; \mathrm{N}, 7.9 \%\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$

2130, 1720 and $1660 ; \delta_{\mathrm{H}}-0.01$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.04 ($3 \mathrm{H}, \mathrm{s}$, SiMe), $0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right.$), 0.88 ($3 \mathrm{H}, \mathrm{t}, J 6.6$, Me), $1.20-1.55$ $\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 2.84\left(1 \mathrm{H}, \mathrm{dd}, J 15.0\right.$ and 5.0 , one of $\left.4-\mathrm{H}_{2}\right)$, $3.15\left(1 \mathrm{H}, \mathrm{dd}, J 15.0\right.$ and 7.5 , one of $\left.4-\mathrm{H}_{2}\right), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and 4.16-4.26 $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$.

Methyl 5-(tert-butyldimethylsilyloxy)-2-diazo-3-oxonon-8enoate 2d. Yield 100%, as a pale yellow oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 341.1902. $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$ requires $M, 341.1896$); $v_{\text {max }} / \mathrm{cm}^{-1} 2130$, 1720 and $1650 ; \delta_{\mathrm{H}} 0.01$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.85 $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.54-1.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.07-2.19(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 2.88\left(1 \mathrm{H}, \mathrm{dd}, J 15.2\right.$ and 5.3 , one of $\left.4-\mathrm{H}_{2}\right), 3.18(1 \mathrm{H}, \mathrm{dd}$, $J 15.2$ and 7.3 , one of $\left.4-\mathrm{H}_{2}\right), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.26(1 \mathrm{H}, \mathrm{dq}$, $J 7.3$ and $5.5,5-\mathrm{H}), 4.92-5.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $5.74-5.89$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$).

Methyl 5-(tert-butyldimethylsilyloxy)-2-diazo-7-methyl-3oxooctanoate 2e. Yield 100%, as a pale yellow oil (Found: C, 55.7; H, 8.9; N, 8.4. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ Si requires C, 56.1; H, 8.8; N, 8.2%); $v_{\text {max }} / \mathrm{cm}^{-1} 2100,1700$ and $1640 ; \delta_{\mathrm{H}} 0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$, 0.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right.$), 0.91 ($6 \mathrm{H}, \mathrm{d}, J 6.6$, $2 \times \mathrm{Me}), 1.20-1.47\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 1.60-1.75(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $2.88\left(1 \mathrm{H}, \mathrm{dd}, J 15.2\right.$ and 5.1 , one of $\left.4-\mathrm{H}_{2}\right), 3.14(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and 7.3, one of $\left.4-\mathrm{H}_{2}\right), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $4.23-4.33(1 \mathrm{H}, \mathrm{m}$, 5-H).
Methyl 5-(tert-butyldimethylsilyloxy)-2-diazo-3-oxo-7-phenylheptanoate 2f. Yield 97%, as a pale yellow oil (Found: C, 61.5; $\mathrm{H}, 7.9 ; \mathrm{N}, 7.3 . \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$ requires C, 61.5; H, 7.7; N, 7.2\%); $v_{\text {max }} / \mathrm{cm}^{-1} 2125,1715$ and $1650 ; \delta_{\mathrm{H}} 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.07(3 \mathrm{H}$, s , SiMe), 0.88 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}$), 1.72-1.93 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.59$2.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.95\left(1 \mathrm{H}, \mathrm{dd}, J 15.3\right.$ and 5.5 , one of $\left.4-\mathrm{H}_{2}\right)$, $3.23\left(1 \mathrm{H}, \mathrm{dd}, J 15.3\right.$ and 7.1 , one of $\left.4-\mathrm{H}_{2}\right), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 4.27-4.37 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$) and 7.15-7.30 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Methyl 5-(tert-butyldimethylsilyloxy)-2-diazo-3-oxo-6-phenylhexanoate 2g. Yield 96%, as a pale yellow oil (Found: C, 60.5, $\mathrm{H}, 7.6 ; \mathrm{N}, 7.4 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$ requires C, 60.6; H, 7.5; N, 7.4\%); $v_{\text {max }} / \mathrm{cm}^{-1} 2150,1720$ and $1650 ; \delta_{\mathrm{H}}-0.17(3 \mathrm{H}, \mathrm{s}$, SiMe $),-0.06$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 2.81\left(2 \mathrm{H}, \mathrm{d}, J 6.4,6-\mathrm{H}_{2}\right)$, $2.89\left(1 \mathrm{H}, \mathrm{dd}, J 15.7\right.$ and 5.5 , one of $\left.4-\mathrm{H}_{2}\right), 3.14(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and 6.9, one of 4- H_{2}), $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.39-4.49(1 \mathrm{H}, \mathrm{m}, 5-$ $\mathrm{H})$ and $7.17-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Intramolecular $\mathbf{C}-\mathbf{H}$ insertion reaction of compound 2a

General procedure. A solution of $\mathbf{2 a}(157 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dichloromethane $\left(4 \mathrm{~cm}^{3}\right)$ was added to a boiling solution of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{mg}, 0.005 \mathrm{mmol})$ in dichloromethane $\left(26 \mathrm{~cm}^{3}\right)$ and the mixture was refluxed for 15 min . After this, the mixture was evaporated and the crude product was chromatographed on silica gel [hexane-AcOEt (7:1)] to give a mixture of 3 a and $\mathbf{4 a}$ (total $125 \mathrm{mg}, 87 \%$) as a colourless oil. The ratio of 3a and $4 \mathbf{a}$ was estimated to be $79: 21$ by integration of the intensities of the peak heights of the signals due to the methine proton at the 1-position: these appeared at $\delta 3.13$ (d) and 2.82 (d), respectively. The mixture was re-chromatographed on silica gel [hexane-AcOEt ($50: 1$)]. The first fraction gave methyl (1S*,2S*,3S*)-3-(tert-butyldimethylsilyloxy)-2-methyl-5-oxocyclopentanecarboxylate $\mathbf{4 a}$ as a colourless oil (Found: $\mathrm{M}+\mathrm{H}^{+}$ 287.1694. $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}$ requires $M, 287.1679$); $v_{\text {max }} / \mathrm{cm}^{-1} 1760$ and 1735; $\delta_{\mathrm{H}} 0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.89(9 \mathrm{H}, \mathrm{s}$, SiCMe_{3}), 1.18 ($3 \mathrm{H}, \mathrm{d}, J 6.5,2-\mathrm{Me}$), 2.34 ($1 \mathrm{H}, \mathrm{dd}, J 18.5$ and 8.9 , one of $\left.4-\mathrm{H}_{2}\right), 2.50-2.65(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.65(1 \mathrm{H}$, ddd, $J 18.3,7.0$ and 1.0, one of $\left.4-\mathrm{H}_{2}\right), 2.82(1 \mathrm{H}, \mathrm{d}, J 11.9,1-\mathrm{H}), 3.75$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $3.89(1 \mathrm{H}, \mathrm{td}, J 8.6$ and $7.0,3-\mathrm{H}) ; \delta_{\mathrm{C}}-4.9$ (SiMe), -4.6 (SiMe), 16.3 (2-Me), 17.9 (quaternary C), 25.7(3) (Bu^{t}), 44.1 (2-C), 47.6 (4-C), $52.5(\mathrm{OMe}), 61.8$ (1-C), 73.8 (3-C), 168.7 (ester $\mathrm{C}=\mathrm{O}$) and $207.3(\mathrm{C}=\mathrm{O})$. The second fraction gave methyl ($\mathrm{R}^{*}, 2 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}$)-3-(tert-butyldimethylsilyloxy)-2-methyl-5-oxocyclopentanecarboxylate 3a, $\mathrm{mp} 46.5-48^{\circ} \mathrm{C}$ (from pentane) (Found: C, $58.5 ; \mathrm{H}, 9.3 . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Si}$ requires C, $58.7 ; \mathrm{H}$, $9.15 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1760$ and $1735 ; \delta_{\mathrm{H}} 0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.08$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.15(3 \mathrm{H}, \mathrm{d}, J 6.6,2-\mathrm{Me})$, $2.37\left(1 \mathrm{H}, \mathrm{d}, J 18.1\right.$, one of $\left.4-\mathrm{H}_{2}\right), 2.52(1 \mathrm{H}, \mathrm{dd}, J 18.1$ and 4.2 ,
one of $\left.4-\mathrm{H}_{2}\right), 2.62(1 \mathrm{H}, \mathrm{dqd}, J 12.0,6.6$ and $3.6,2-\mathrm{H}), 3.13$ $(1 \mathrm{H}, \mathrm{d}, J 12.2,1-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $4.33(1 \mathrm{H}, \mathrm{t}, J 3.9$, $3-\mathrm{H}) ; \delta_{\mathrm{C}}-5.0(\mathrm{SiMe}),-4.7$ (SiMe), 14.0 (2-Me), 18.0 (quaternary C), 25.7(3) (Bu^{t}), 42.0 (2-C), 49.3 (4-C), 52.4 (OMe), 58.6 (1-C), 71.0 (3-C), 169.8 (ester C=O) and 210.2 (C=O).

3,4-cis-3-(tert-Butyldimethylsilyloxy)-4-methylcyclopentan-
one 5. Following the method reported by Taber and his coworkers, ${ }^{12}$ a mixture of $\mathbf{3 a}(40 \mathrm{mg}, 0.14 \mathrm{mmol})$ and DMAP (7 $\mathrm{mg}, 0.06 \mathrm{mmol})$ in toluene $\left(1 \mathrm{~cm}^{3}\right)$ and $1 \mathrm{~mol} \mathrm{dm}^{-3}$ phosphate buffer $\left(\mathrm{pH} 7 ; 1 \mathrm{~cm}^{3}\right)$ was stirred at $90^{\circ} \mathrm{C}$ for 21 h , and then partitioned between aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and AcOEt. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (20:1)] to give 5 ($21 \mathrm{mg}, 66 \%$) as a colourless oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 229.1639. $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}$ requires M, 229.1624); $v_{\text {max }} / \mathrm{cm}^{-1} 1750$; $\delta_{\mathrm{H}} 0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right)$, $1.10(3 \mathrm{H}, \mathrm{d}, J 6.3,4-\mathrm{Me}), 2.01-2.41\left(5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 4-\mathrm{H}\right.$, and $\left.5-\mathrm{H}_{2}\right)$ and $4.30-4.34(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$.

3,4-trans-3-(tert-Butyldimethylsilyloxy)-4-methylcyclopentanone 6. (i) According to the reported method, ${ }^{13 a}$ a solution of methyllithium in diethyl ether $\left(1.03 \mathrm{~mol} \mathrm{dm}^{-3} ; 0.93 \mathrm{~cm}^{3}, 0.96\right.$ mmol) was added to a solution of copper(II) iodide ($91 \mathrm{mg}, 0.48$ $\mathrm{mmol})$ in diethyl ether $\left(1 \mathrm{~cm}^{3}\right)$ at $-70^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the mixture was stirred at the same temperature for 2 h . A solution of 4-(tert-butyldimethylsilyloxy)-2cyclopentenone $7^{14}(50 \mathrm{mg}, 0.24 \mathrm{mmol})$ in diethyl ether (1.5 cm^{3}) was added to this mixture after which it was stirred for a further 30 min , and then treated with aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated, and the aqueous layer was extracted with diethyl ether. The combined organic layer and extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (20:1)] to give $6(32 \mathrm{mg}, 59 \%)$ as a colourless oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 229.1633); $v_{\text {max }} / \mathrm{cm}^{-1} 1750 ; \delta_{\mathrm{H}} 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.09(3 \mathrm{H}, \mathrm{s}$, SiMe), 0.89 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}$), 1.09 ($3 \mathrm{H}, \mathrm{d}, J 6.9,4-\mathrm{Me}$), $1.76-$ $1.88(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.12-2.29(2 \mathrm{H}, \mathrm{m}), 2.46-2.61(2 \mathrm{H}, \mathrm{m})$ and $3.98(1 \mathrm{H}, \mathrm{q}, J 6.0,3-\mathrm{H})$.
(ii) Following a procedure similar to that described above for the preparation of $\mathbf{5}$, compound $\mathbf{6}(13 \mathrm{mg}, 62 \%)$ was obtained from $4 \mathrm{a}(26 \mathrm{mg}, 0.09 \mathrm{mmol})$ and DMAP $(5 \mathrm{mg}, 0.04 \mathrm{mmol})$ as a colourless oil, the spectral data for which were identical with those of an authentic sample obtained from 7.

Intramolecular C-H insertion reaction of compound 2b

Following the general procedure, compound $\mathbf{2 b}$ ($244 \mathrm{mg}, 0.56$ $\mathrm{mmol})$ was treated with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(3 \mathrm{mg}, 0.006 \mathrm{mmol})$, and the crude material was chromatographed on silica gel [hexane$\operatorname{AcOEt}(7: 1)$] to give an oily mixture of methyl ($\left.1 \mathrm{R}^{*}, 2 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}\right)$ -3-(tert-butyldiphenylsilyloxy)-2-methyl-5-oxocyclopentanecarboxylate 3b and methyl ($1 \mathrm{~S}^{*}, 2 \mathrm{~S}^{*}, 3 \mathrm{~S}^{*}$)-3-(tert-butyldiphenyl-silyloxy)-2-methyl-5-oxocyclopentanecarboxylate 4b (total 190 $\mathrm{mg}, 83 \%$) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 411.2003. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{4}$ Si requires M, 411.1991); $v_{\max } / \mathrm{cm}^{-1} 1760$ and 1725; δ_{H} (for 3b) $1.07(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.20(3 \mathrm{H}, \mathrm{d}, J 6.7,2-\mathrm{Me}), 2.25(2 \mathrm{H}, \mathrm{d}, J 2.5$, $\left.4-\mathrm{H}_{2}\right), 2.51-2.64(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{d}, J 12.2,1-\mathrm{H}), 3.76$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.44(1 \mathrm{H}, \mathrm{q}, J 2.9,3-\mathrm{H}), 7.34-7.49(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.56-7.67 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); δ_{C} (for 3b) 14.3 (2-Me), 19.4 (quaternary C), $26.9(3)\left(\mathrm{Bu}^{t}\right), 42.2$ (2-C), 48.8 (4-C), 52.5 (OMe), 59.0 (1-C), 72.2 (3-C), $127.7(3)$ (Ar), 127.9 (Ar), 130.0(2) (Ar), 132.9 (Ar), 133.5 (Ar), 135.8(2) (Ar), 135.9(2) (Ar), 169.6 (ester $\mathrm{C}=\mathrm{O}$) and $210.0(\mathrm{C}=\mathrm{O})$. The ratio of $\mathbf{3 b}$ and $\mathbf{4 b}$ was estimated to be 57:43 from integration of the intensities of the peak heights of the signals due to the methine proton at the 3-position which appeared at $\delta 4.44$ (q) and 3.85-4.00 (m), respectively.

Intramolecular $\mathbf{C}-\mathbf{H}$ insertion reaction of compound 2 c

Following the general procedure, compound 2c ($125 \mathrm{mg}, 0.35$ $\mathrm{mmol})$ was treated with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{mg}, 0.004 \mathrm{mmol})$, and the crude material was chromatographed on silica gel [hexane-
$\operatorname{AcOEt}(7: 1)$] to give an oily mixture of $\mathbf{3 c}$ and $\mathbf{4 c}$ (total 85 mg , 74%). The ratio of $3 \mathbf{c}$ and $\mathbf{4 c}$ was estimated to be $78: 22$ by integration of the intensities of the peak heights of the signals due to the methine proton at the 1 -position which appeared at $\delta 3.15$ (d) and 2.88 (d), respectively. The mixture was rechromatographed on silica gel [hexane-AcOEt ($50: 1)$]. The first fraction gave methyl ($1 \mathrm{~S}^{*}, 2 \mathrm{~S}^{*}, 3 \mathrm{~S}^{*}$)-3-(tert-butyldimethylsilyloxy)-2-butyl-5-oxocyclopentanecarboxylate $\mathbf{4 c}$, as an oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 329.2158. $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}$ requires $M, 329.2148$); $v_{\text {max }} /$ $\mathrm{cm}^{-1} 1760$ and $1730 ; \delta_{\mathrm{H}} 0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$, $0.88(3 \mathrm{H}, \mathrm{t}, J 5.2, \mathrm{Me}), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.22-1.42(6 \mathrm{H}$, $\left.\mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 2.37\left(1 \mathrm{H}, \mathrm{dd}, J 18.3\right.$ and 8.3 , one of $\left.4-\mathrm{H}_{2}\right), 2.53-$ $2.70(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.64(1 \mathrm{H}$, ddd, $J 18.3,6.8$ and 1.0, one of $4-\mathrm{H}_{2}$), $2.88(1 \mathrm{H}, \mathrm{d}, J 10.7,1-\mathrm{H}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and 3.99 $(1 \mathrm{H}, \mathrm{td}, J 8.1$ and $6.8,3-\mathrm{H}) ; \delta_{\mathrm{C}}-4.9(\mathrm{SiMe}),-4.5(\mathrm{SiMe}), 13.9$ $\left(\mathrm{CH}_{3}\right), 17.9$ (quaternary C), $22.7\left(\mathrm{CH}_{2}\right), 25.7(3)\left(\mathrm{Bu}^{7}\right), 29.1$ $\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 47.7(2-\mathrm{C}), 49.0(4-\mathrm{C}), 52.5(\mathrm{OMe}), 60.4$ (1-C), 72.7 (3-C), 169.4 (ester $\mathrm{C}=\mathrm{O}$) and 208.1 ($\mathrm{C}=\mathrm{O}$). The second fraction gave methyl ($1 \mathrm{R}^{*}, 2 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}$)-3-(tert-butyl-dimethylsilyloxy)-2-butyl-5-oxocyclopentanecarboxylate 3c, as an oil (Found: $\mathrm{M}+\mathrm{H}^{+}, 329.2155$); $v_{\max } / \mathrm{cm}^{-1} 1760$ and 1725; δ_{H} $0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right)$, $0.90\left(3 \mathrm{H}, \mathrm{t}, J 6.9\right.$, Me), $1.20-1.70\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 2.37(1 \mathrm{H}$, d, $J 18.0$, one of $\left.4-\mathrm{H}_{2}\right), 2.50(1 \mathrm{H}, \mathrm{dd}, J 18.0$ and 4.0 , one of $\left.4-\mathrm{H}_{2}\right), 2.48-2.58(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.15(1 \mathrm{H}, \mathrm{d}, J 11.8,1-\mathrm{H}), 3.76$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$) and $4.43(1 \mathrm{H}, \mathrm{t}, J 3.7,3-\mathrm{H})$; $\delta_{\mathrm{C}}-5.1$ (SiMe), $-4.5(\mathrm{SiMe}), 14.0\left(\mathrm{CH}_{3}\right), 17.9$ (quaternary C), $22.8\left(\mathrm{CH}_{2}\right)$, $25.6(3)\left(\mathrm{Bu}^{t}\right), 28.7\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 47.5(2-\mathrm{C}), 49.2(4-\mathrm{C})$, 52.4 (OMe), 57.9 (1-C), 69.3 (3-C), 170.3 (ester $\mathrm{C}=\mathrm{O}$) and 210.3 ($\mathrm{C}=\mathrm{O}$).

Intramolecular $\mathbf{C} \mathbf{- H}$ insertion reaction of compound $\mathbf{2 d}$

Following the general procedure, compound $\mathbf{2 d}(170 \mathrm{mg}, 0.50$ $\mathrm{mmol})$ was treated with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{mg}, 0.005 \mathrm{mmol})$, after which the crude product was chromatographed on silica gel [hexane-AcOEt (7:1)] to give an oily mixture of 3d and $\mathbf{4 d}$ (total $116 \mathrm{mg}, 74 \%$). The ratio of $\mathbf{3 d}$ and $\mathbf{4 d}$ was estimated to be $80: 20$ by integration of the intensities of the peak heights of the signals due to the methine proton at the 1-position which appeared at $\delta 3.15$ (d) and 2.93 (d), respectively. The mixture was re-chromatographed on silica gel [hexane-AcOEt ($50: 1$)]. The first fraction gave methyl ($1 \mathrm{~S}^{*}, 2 \mathrm{~S}^{*}, 3 \mathrm{~S}^{*}$)-3-(tert-butyl-dimethylsilyloxy)-5-oxo-2-(prop-2-enyl)cyclopentanecarboxylate 4d, as an oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 313.1844. $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{Si}$ requires $M, 313.1835)$; $v_{\max } / \mathrm{cm}^{-1} 1760$ and $1725 ; \delta_{\mathrm{H}} 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$, 0.09 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right.$), $2.09-2.24$ ($1 \mathrm{H}, \mathrm{m}$, one of $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.36\left(1 \mathrm{H}, \mathrm{dd}, J 18.4\right.$ and 8.4 , one of $\left.4-\mathrm{H}_{2}\right)$, 2.45-2.56 (1 H, m, one of $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 2.61-2.77(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and one of $\left.4-\mathrm{H}_{2}\right), 2.93(1 \mathrm{H}, \mathrm{d}, J 11.2,1-\mathrm{H}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.03(1 \mathrm{H}, \mathrm{td}, J 8.2$ and $6.9,3-\mathrm{H}), 5.00-5.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and 5.67-5.83 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{CH}_{2}$); $\delta_{\mathrm{C}}-4.9(\mathrm{SiMe}),-4.5$ (SiMe), 17.9 (quaternary C), $25.7(3)\left(\mathrm{Bu}^{t}\right), 35.2\left(\mathrm{CH}_{2}\right), 47.5$ (2-C), 48.5 ($4-\mathrm{C}$), 52.5 (OMe), 59.4 (1-C), 71.4 (3-C), 117.9 $\left(=\mathrm{CH}_{2}\right), 134.6(=\mathrm{CH}), 168.9($ ester $\mathrm{C}=\mathrm{O})$ and $207.5(\mathrm{C}=\mathrm{O})$. The second fraction gave methyl ($1 \mathrm{R}^{*}, 2 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}$)-3-(tert-butyldimeth-ylsilyloxy)-5-oxo-2-(prop-2-enyl) cyclopentanecarboxylate 3d, as an oil (Found: $\mathrm{M}+\mathrm{H}^{+}, 313.1853$); $v_{\max } / \mathrm{cm}^{-1} 1760$ and $1730 ; \delta_{\mathrm{H}}$ 0.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right)$, 2.18-2.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{CH}=$), $2.37\left(1 \mathrm{H}, \mathrm{d}, J 18.0\right.$, one of $4-\mathrm{H}_{2}$), $2.50\left(1 \mathrm{H}, \mathrm{dd}, J 18.0\right.$ and 4.0 , one of 4- H_{2}), 2.58-2.70 $(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 3.15(1 \mathrm{H}, \mathrm{d}, J 12.0,1-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.43(1 \mathrm{H}, \mathrm{t}$, $J 3.7,3-\mathrm{H}), 4.97-5.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $5.68-5.84(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C} H=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}-5.1(\mathrm{SiMe}),-4.5(\mathrm{SiMe}), 17.9$ (quaternary C), 25.7(3) ($\left.\mathrm{Bu}^{t}\right), 33.5\left(\mathrm{CH}_{2}\right), 47.1(2-\mathrm{C}), 49.1(4-\mathrm{C}), 52.4$ $(\mathrm{OMe}), 57.5(1-\mathrm{C}), 69.5(3-\mathrm{C}), 116.7\left(=\mathrm{CH}_{2}\right), 135.5(=\mathrm{CH}-)$, 170.3 (ester $\mathrm{C}=\mathrm{O}$) and $210.3(\mathrm{C}=\mathrm{O})$.

Intramolecular $\mathbf{C}-\mathbf{H}$ insertion reaction of compound 2 e

Following the general procedure, compound $2 \mathrm{e}(171 \mathrm{mg}, 0.50$ $\mathrm{mmol})$ was treated with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{mg}, 0.005 \mathrm{mmol})$, after
which the crude product was chromatographed on silica gel [hexane- $\operatorname{AcOEt}(7: 1)$] to give an oily mixture of $3 \mathbf{e}$ and $\mathbf{4 e}$ (total $118 \mathrm{mg}, 75 \%$). The ratio of $\mathbf{3 e}$ and $\mathbf{4 e}$ was estimated to be $90: 10$ by integration of the intensities of the peak heights of the signals due to the methine proton at the 1-position which appeared at $\delta 3.16$ (d) and 2.98 (d), respectively. The mixture was re-chromatographed on silica gel [hexane-AcOEt (50:1)] to give pure methyl $\left(1 \mathrm{R}^{*}, 2 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}\right)$-3-(tert-butyldimethylsilyl-oxy)-2-(1-methylethyl)-5-oxocyclopentanecarboxylate 3 e and a mixture of 3e and methyl (1S*,2S*,3S*)-3-(tert-butyldimethyl-silyloxy)-2-(1-methylethyl)-5-oxocyclopentanecarboxylate $\mathbf{4 e}$. Compound 3e was an oil (Found: C, 61.0; H, 9.8. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}$ requires C, $61.1 ; \mathrm{H}, 9.6 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ and $1710 ; \delta_{\mathrm{H}} 0.04$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.07$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right.$), $0.86(3 \mathrm{H}$, d, $J 7.0$, Me), $0.99(3 \mathrm{H}, \mathrm{d}, J 6.5$, Me), $1.85-2.00(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{Me}_{2}$), $2.26(1 \mathrm{H}$, ddd, $J 11.4,10.4$ and 3.4, 2-H), $2.38(1 \mathrm{H}, \mathrm{d}$, J 17.7, one of $\left.4-\mathrm{H}_{2}\right), 2.49\left(1 \mathrm{H}, \mathrm{dd}, J 17.7\right.$ and 3.7, one of $\left.4-\mathrm{H}_{2}\right)$, $3.16(1 \mathrm{H}, \mathrm{d}, J 11.5,1-\mathrm{H}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $4.51(1 \mathrm{H}, \mathrm{t}$, $J 3.5,3-\mathrm{H}) ; \delta_{\mathrm{C}}-5.1$ (SiMe), -4.3 (SiMe), 17.9 (quaternary C), $20.6\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 25.6(3)\left(\mathrm{Bu}^{\dagger}\right), 27.8(\mathrm{CH}), 49.5(4-\mathrm{C})$, 52.5 (OMe), 54.9 (2-C), 57.3 (1-C), 69.1 (3-C), 171.0 (ester $\mathrm{C}=\mathrm{O}$) and $210.6(\mathrm{C}=\mathrm{O})$.

Intramolecular $\mathbf{C}-\mathbf{H}$ insertion reaction of compound 2 f

Following the general procedure, compound $\mathbf{2 f}(170 \mathrm{mg}, 0.44$ mmol) was treated with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{mg}, 0.004 \mathrm{mmol})$, after which the crude product was chromatographed on silica gel [hexane-AcOEt (7:1)] to give an oily mixture of methyl (1R*,2R*,3S*)-3-(tert-butyldimethylsilyloxy)-5-oxo-2-benzyl-
cyclopentanecarboxylate $\mathbf{3 f}$ and methyl ($1 \mathrm{~S}^{*}, 2 \mathrm{~S}^{*}, 3 \mathrm{~S}^{*}$)-3-(tert-butyldimethylsilyloxy)-5-oxo-2-benzylcyclopentanecarboxylate $4 f$ (total $61 \mathrm{mg}, 39 \%$) (Found: $\mathrm{M}+\mathrm{H}^{+} 363.2009 . \mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}$ requires $M, 363.1992$); $v_{\text {max }} / \mathrm{cm}^{-1} 1760$ and $1730 ; \delta_{\mathrm{H}}$ (for 3f) 0.05 $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiMe}), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 2.40(1 \mathrm{H}, \mathrm{d}, J 18.0$, one of $\left.4-\mathrm{H}_{2}\right), 2.52\left(1 \mathrm{H}, \mathrm{dd}, J 18.1\right.$ and 3.9 , one of $\left.4-\mathrm{H}_{2}\right), 2.75-$ $3.01\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.25(1 \mathrm{H}, \mathrm{d}, J 11.3,1-\mathrm{H}), 3.46$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.43(1 \mathrm{H}, \mathrm{t}, J 3.4,3-\mathrm{H})$ and 7.18-7.32 ($5 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$; δ_{C} (for $\mathbf{3 f}$) $-5.0(\mathrm{SiMe}),-4.4(\mathrm{SiMe}), 18.0$ (quaternary C), 25.8(3) ($\left.\mathrm{Bu}^{\prime}\right), 35.5\left(\mathrm{CH}_{2}\right), 49.1$ (2-C), 49.2 (4-C), 52.5 (OMe), 57.6 (1-C), 69.7 (3-C), 126.4 (Ar), 128.3(2) (Ar), 129.0(2) (Ar), 138.9 (Ar), 169.6 (ester C=O) and 209.8 ($\mathrm{C}=\mathrm{O}$). The ratio of $\mathbf{3 f}$ and $\mathbf{4 f}$ was estimated to be $83: 17$ by integration of the intensities of the peak heights of the signals due to the methine proton at the 3-position which appeared at $\delta 4.43(\mathrm{t})$ and $4.00-$ $4.10(\mathrm{~m})$, respectively.

Intramolecular $\mathbf{C}-\mathbf{H}$ insertion reaction of compound $\mathbf{2 g}$

Following the general procedure, compound $\mathbf{2 g}(127 \mathrm{mg}, 0.34$ mmol) was treated with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1 \mathrm{mg}, 0.003 \mathrm{mmol})$, after which the crude product was chromatographed on silica gel [hexane-AcOEt (7:1)] to give an oily mixture of $\mathbf{3 g}$ and $\mathbf{4 g}$ (total $42 \mathrm{mg}, 36 \%$). The ratio of $\mathbf{3 g}$ and $\mathbf{4 g}$ was estimated to be 70:30 by integration of the intensities of the peak heights of the signals due to the methine proton at the 3-position which appeared at $\delta 4.52(\mathrm{t})$ and $4.29(\mathrm{td})$, respectively. The mixture was re-chromatographed on silica gel [hexane-AcOEt ($50: 1$)]. The first fraction gave methyl ($1 \mathrm{~S}^{*}, 2 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}$)-3-(tert-butyl-dimethylsilyloxy)-5-oxo-2-phenylcyclopentanecarboxylate $\mathbf{4 g}$, $\mathrm{mp} 81.5-83{ }^{\circ} \mathrm{C}$ (from hexane) (Found: C, 65.2; H, 8.3. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}$ requires C, $65.5 ; \mathrm{H}, 8.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1760$ and 1740; $\delta_{\mathrm{H}}-0.34(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}),-0.18(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.76(9 \mathrm{H}, \mathrm{s}$, SiCMe_{3}), $2.52\left(1 \mathrm{H}, \mathrm{dd}, J 18.6\right.$ and 9.0 , one of $\left.4-\mathrm{H}_{2}\right), 2.83(1 \mathrm{H}$, ddd, $J 18.1,7.2$ and 1.0, one of $4-\mathrm{H}_{2}$), $3.52(1 \mathrm{H}, \mathrm{d}, J 12.5,1-\mathrm{H})$, $3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.71(1 \mathrm{H}, \mathrm{dd}, J 12.6$ and $8.9,2-\mathrm{H}), 4.29$ (1 $\mathrm{H}, \mathrm{td}, J 9.0$ and $7.2,3-\mathrm{H})$ and $7.25-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}-5.4$ (SiMe), -5.2 (SiMe), 17.9 (quaternary C), 25.6(3) (Bu^{t}), 47.7 (4-C), 52.7 (OMe), 54.7 (2-C), 61.4 (1-C), 74.3 (3-C), 127.5 (Ar), 127.8(2)(Ar), 128.7(2) (Ar), $138.5(\mathrm{Ar}), 168.1$ (ester $\mathrm{C}=\mathrm{O}$) and 206.4 ($\mathrm{C}=\mathrm{O}$). The second fraction gave methyl ($1 \mathrm{R}^{*}, 2 \mathrm{~S}^{*}, 3 \mathrm{~S}^{*}$)-3-(tert-butyldimethylsilyloxy)-5-oxo-2-phenylcyclopentanecarb-
oxylate $\mathbf{3 g}$, as an oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 349.1852. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{Si}$ requires $M, 349.1835)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1760$ and $1730 ; \delta_{\mathrm{H}}-0.45(3 \mathrm{H}$, s , SiMe), $-0.22(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.71\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 2.52(1 \mathrm{H}$, d, $J 18.1$, one of $\left.4-\mathrm{H}_{2}\right), 2.72(1 \mathrm{H}, \mathrm{dd}, J 18.1$ and 4.2 , one of $\left.4-\mathrm{H}_{2}\right), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.86(1 \mathrm{H}, \mathrm{dd}, J 12.7$ and $3.2,2-\mathrm{H})$, $3.97(1 \mathrm{H}, \mathrm{d}, J 12.7,1-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{t}, J 3.8,3-\mathrm{H})$ and $7.25-7.38$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}-5.7$ (SiMe), -5.5 (SiMe), 17.9 (quaternary C), $25.6(3)\left(\mathrm{Bu}^{t}\right), 49.4(4-\mathrm{C}), 52.5(\mathrm{OMe}), 52.6(2-\mathrm{C}), 55.8(1-\mathrm{C})$, $72.0(3-\mathrm{C}), 127.3(\mathrm{Ar}), 128.3(2)(\mathrm{Ar}), 128.4(2)(\mathrm{Ar}), 136.8(\mathrm{Ar})$, 169.3 (ester $\mathrm{C}=\mathrm{O}$) and $209.5(\mathrm{C}=\mathrm{O})$.

Methyl 3-(tert-butyldimethylsilyloxy)pentanoate

A mixture of commercially available methyl 3-hydroxypentanoate ($800 \mathrm{mg}, 6.05 \mathrm{mmol}$), tert-butyldimethylchlorosilane ($1.55 \mathrm{~g}, 10.3 \mathrm{mmol}$) and imidazole ($1.48 \mathrm{~g}, 21.8 \mathrm{mmol}$) in dimethylformamide $\left(25 \mathrm{~cm}^{3}\right.$) was stirred overnight at room temperature, and then poured into water $\left(30 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt ($50: 1$)] to give the title compound ($1.49 \mathrm{~g}, 100 \%$) as a colourless oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 247.1734. $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}$ requires $M, 247.1730$); $v_{\text {max }} /$ $\mathrm{cm}^{-1} 1715 ; \delta_{\mathrm{H}} 0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.87(9 \mathrm{H}$, $\mathrm{s}, \mathrm{SiCMe}_{3}$), $0.89(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Me}), 1.47-1.58\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$, $2.41\left(1 \mathrm{H}\right.$, dd, $J 14.7$ and 5.7 , one of $\left.2-\mathrm{H}_{2}\right), 2.46(1 \mathrm{H}$, dd, $J 14.7$ and 7.0, one of $\left.2-\mathrm{H}_{2}\right), 3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $4.04-4.14(1 \mathrm{H}, \mathrm{m}$, $3-H)$.

4-(tert-Butyldimethylsilyloxy)-1-diazohexan-2-one 8

Aqueous $\mathrm{LiOH}\left(1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 4.1 \mathrm{~cm}^{3}, 6.1 \mathrm{mmol}\right)$ was added to a solution of methyl 3-(tert-butyldimethylsilyloxy)pentanoate $(300 \mathrm{mg}, 1.2 \mathrm{mmol})$ in methanol $\left(10 \mathrm{~cm}^{3}\right)$ at room temperature. The mixture was stirred overnight and then neutralised with 10% aq. HCl and extracted with diethyl ether. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give crude carboxylic acid $(251 \mathrm{mg})$. To a solution of the carboxylic acid ($251 \mathrm{mg}, 1.08 \mathrm{mmol}$) in benzene $\left(10 \mathrm{~cm}^{3}\right)$ were added pyridine ($85 \mathrm{mg}, 1.08 \mathrm{mmol}$) and oxalyl chloride ($411 \mathrm{mg}, 3.24 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 13 h after which the precipitate was filtered off. The filtrate was concentrated to afford the crude acid choloride $(216 \mathrm{mg})$. The acid chloride in diethyl ether $\left(5 \mathrm{~cm}^{3}\right)$ was treated with a solution of diazomethane in diethyl ether at $0^{\circ} \mathrm{C}$. After the mixture had been stirred for 2 h the excess diazomethane was decomposed by addition of acetic acid. The resulting mixture was diluted with diethyl ether and washed with sat. aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexaneAcOEt (10:1)] to give 8 [$136 \mathrm{mg}, 49 \%$ from methyl 3 -(tertbutyldimethylsilyloxy)pentanoate] as a colourless oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 257.1694. $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ Si requires M, 257.1686); $v_{\text {max }} /$ $\mathrm{cm}^{-1} 2100$ and $1640 ; \delta_{\mathrm{H}} 0.03(3 \mathrm{H}, \mathrm{s}$, SiMe $), 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$, $0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.89(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Me}), 1.46-1.61(2 \mathrm{H}$, $\left.\mathrm{m}, 5-\mathrm{H}_{2}\right), 2.33-2.53\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 4.01-4.14(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ and $5.32\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHN}_{2}\right)$.

Intramolecular $\mathbf{C}-\mathbf{H}$ insertion reaction of compound 8

Following the general procedure, compound $\mathbf{8}(135 \mathrm{mg}, 0.53$ $\mathrm{mmol})$ was treated with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2 \mathrm{mg}, 0.005 \mathrm{mmol})$ after which the crude product was chromatographed on silica gel [hexane-AcOEt (20:1)] to give an oily mixture of $\mathbf{5}$ and $\mathbf{6}$ (total $80 \mathrm{mg}, 66 \%)$. The ratio of $\mathbf{5}$ and $\mathbf{6}$ was estimated to be $56: 44$ by integration of the intensities of the peak heights of the signals due to the methine proton at the 3-position which appeared at $\delta 4.30-4.34(\mathrm{~m})$ and $3.98(\mathrm{q})$, respectively.

Methyl (E)-5-(tert-butyldimethylsilyloxy)hept-2-enoate

A solution of diisobutylaluminium hydride in hexane $(0.95 \mathrm{~mol}$ $\mathrm{dm}^{-3} ; 1.36 \mathrm{~cm}^{3}, 1.29 \mathrm{mmol}$) was added to a solution of methyl 3 -(tert-butyldimethylsilyloxy)pentanoate ($318 \mathrm{mg}, 1.29 \mathrm{mmol}$)
in anhydrous dichloromethane $\left(15 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min after which it was treated with anhydrous methanol $\left(2 \mathrm{~cm}^{3}\right)$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(2 \mathrm{~cm}^{3}\right)$. After the mixture had been allowed to warm to room temperature it was diluted with diethyl ether, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the crude aldehyde (283 mg). A mixture of the aldehyde ($283 \mathrm{mg}, 1.31$ mmol) and methyl (triphenylphosphoranylidene)acetate (659 $\mathrm{mg}, 1.97 \mathrm{mmol})$ in benzene $\left(15 \mathrm{~cm}^{3}\right)$ was refluxed for 17 h , and then concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (50:1)] to give the title compound [272 $\mathrm{mg}, 93 \%$ from methyl 3 -(tert-butyldimethylsilyloxy)pentanoate] as a colourless oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 273.1896. $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}$ requires $M, 273.1886)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1720$ and $1660 ; \delta_{\mathrm{H}} 0.04(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{SiMe}), 0.88(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Me}), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.42-$ $1.53\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.30-2.38\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 3.66-3.76(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.84(1 \mathrm{H}, \mathrm{dt}, J 15.7$ and $1.3,2-\mathrm{H})$ and $6.97(1 \mathrm{H}, \mathrm{dt}, J 15.7$ and $7.6,3-\mathrm{H})$.

Methyl 5-(tert-butyldimethylsilyloxy)heptanoate

Methyl (E)-5-(tert-butyldimethylsilyloxy)hept-2-enoate (318 $\mathrm{mg}, 1.17 \mathrm{mmol}$) was hydrogenated in ethanol $\left(5 \mathrm{~cm}^{3}\right)$ over 10% palladium-on-carbon (32 mg) at $3 \mathrm{~kg} \mathrm{~cm}^{-2}$ for 15 h . After the catalyst had been filtered off, the filtrate was concentrated. The residue was chromatographed on silica gel [hexane-AcOEt ($80: 1$)] to give the title compound ($243 \mathrm{mg}, 76 \%$) as a colourless oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 275.2054. $\mathrm{C}_{14} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}$ requires M, 275.2042); $v_{\max } / \mathrm{cm}^{-1} 1740 ; \delta_{\mathrm{H}} 0.04(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiMe}), 0.86(3 \mathrm{H}$, $\mathrm{t}, J 7.4, \mathrm{Me}), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.39-1.51(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}_{2}\right), 1.54-1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.31\left(2 \mathrm{H}, \mathrm{t}, J 7.4,2-\mathrm{H}_{2}\right)$, $3.59(1 \mathrm{H}$, quintet, $J 5.7,5-\mathrm{H})$ and $3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$.

Methyl 5-(tert-butyldimethylsilyloxy)-2-benzoylheptanoate

According to the method reported by Taber and co-workers, ${ }^{20}$ methyl 5 -(tert-butyldimethylsilyloxy)heptanoate ($171 \mathrm{mg}, 0.62$ mmol) and methyl benzoate ($169 \mathrm{mg}, 1.24 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$ to a suspension of sodium hydride (60% dispersion in mineral oil; $45 \mathrm{mg}, 1.86 \mathrm{mmol})$ in dimethoxyethane $\left(6 \mathrm{~cm}^{3}\right)$, followed by 2 drops of methanol; the mixture was then heated to reflux for 14 h . The reaction was then quenched by the addition of 10% aq. HCl . The organic layer was separated and the aqueous layer was extracted with diethyl ether. The combined organic layer and extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (30:1)] to give a $1: 1$ mixture of diastereoisomers of the title compound ($166 \mathrm{mg}, 71 \%$) as a colourless oil (Found: $\mathrm{M}+\mathrm{H}^{+}, 379.2315 . \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{4}$ Si requires $M, 379.2305$); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ and 1690; $\delta_{\mathrm{H}}-0.01,0.02$ (total 3 H , both s, SiMe), $0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.80-0.90(3 \mathrm{H}, \mathrm{m}, \mathrm{Me}), 0.84,0.87$ (total 9 H , both s, SiCMe_{3}), 1.40-1.53 ($4 \mathrm{H}, \mathrm{m}$), 1.92-2.13 (2 H , $\left.\mathrm{m}, 3-\mathrm{H}_{2}\right), 3.55-3.70(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.68,3.69$ (total 3 H , both s, OMe), 4.29, 4.31 (total 1 H , both q, $J 7.8,5-\mathrm{H}$), 7.44-7.52 (2 H , $\mathrm{m}, \mathrm{ArH}), 7.55-7.62(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.95-8.01(2 \mathrm{H}, \mathrm{m}$, ArH).

Methyl 5-(tert-butyldimethylsilyloxy)-2-diazoheptanoate 9

According to the method reported by Taber and co-workers, ${ }^{20}$ 1,8-diazabicyclo[5.4.0]undec-7-ene ($104 \mathrm{mg}, 0.68 \mathrm{mmol}$) and 4-nitrobenzenesulfonyl azide ($155 \mathrm{mg}, 0.68 \mathrm{mmol}$) were added to a solution of methyl (tert-butyldimethylsilyloxy)-2-benzoylheptanoate ($163 \mathrm{mg}, 0.43 \mathrm{mmol}$) in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature, stirred for 1 h and then treated with $1 \mathrm{~mol} \mathrm{dm}^{-3}$ phosphate buffer (pH 7 , $13 \mathrm{~cm}^{3}$). The organic layer was separated, and the aqueous layer was extracted with diethyl ether. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (20:1)] to give 9 (120 mg , 93%) as a colourless oil (Found: $\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}^{+}, 273.1890$. $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}$ requires $M, 273.1886$); $v_{\text {max }} / \mathrm{cm}^{-1} 2075$ and 1690; $\delta_{\mathrm{H}} 0.05(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiMe}), 0.87(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Me}), 0.89(9 \mathrm{H}, \mathrm{s}$,
SiCMe_{3}), 1.43-1.54 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $1.57-1.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.25-2.45\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.60-3.70(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$).

$\mathbf{R h}^{\text {II-catalysed reaction of compound } 9}$

A mixture of $9(93 \mathrm{mg}, 0.31 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1 \mathrm{mg}, 0.003$ mmol) in dichloromethane ($20 \mathrm{~cm}^{3}$) was stirred at room temperature for 30 min . After evaporation of the mixture, the crude product was chromatographed on silica gel [hexane-AcOEt (50:1)] to give methyl (Z)-5-(tert-butyldimethylsilyloxy)hept-2enoate $10(52 \mathrm{mg}, 62 \%)$ as a colourless oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 273.1899. $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}$ requires M, 273.1886); $v_{\max } / \mathrm{cm}^{-1} 1720$ and 1640; $\delta_{\mathrm{H}} 0.047$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.051 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.88 (3 $\mathrm{H}, \mathrm{t}, J 6.8, \mathrm{Me}), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.42-1.53\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, 2.74-2.93 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}$), 3.67-3.78 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $3.71(3 \mathrm{H}, \mathrm{s}$, OMe), $5.85(1 \mathrm{H}$, dt, $J 11.5$ and 1.7, 2-H) and $6.39(1 \mathrm{H}$, dt, $J 11.5$ and $7.6,3-\mathrm{H})$.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

References

1 T. Hudlicky and J. D. Price, Chem. Rev., 1989, 89, 1467.
2 For reviews, see: M. P. Doyle, Acc. Chem. Res., 1986, 19, 348; M. P. Doyle, Chem. Rev., 1986, 86, 919; J. Adams and D. M. Spero, Tetrahedron, 1991, 47, 1765; D. F. Taber, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 3, p. 1045; A. Padwa and K. E. Krumpe, Tetrahedron, 1992, 48, 5385; T. Ye and M. A. McKervey, Chem. Rev., 1994, 94, 1091; A. Padwa and D. J. Austin, Angew. Chem. Int. Ed. Engl., 1994, 33, 1797; M. P. Doyle, Aldrichimica Acta, 1996, 29, 3; S. Hashimoto, N. Watanabe, M. Anada and S. Ikegami, J. Synth. Org. Chem., Jpn., 1996, 54, 988.
3 D. F. Taber and R. E. Ruckle, Jr., J. Am. Chem. Soc., 1986, 108, 7686.

4 S. Hashimoto, T. Shinoda, Y. Shimada, T. Honda and S. Ikegami, Tetrahedron Lett., 1987, 28, 637; S. Hashimoto, N. Watanabe and S. Ikegami, Tetrahedron Lett., 1992, 33, 2709; S. Hashimoto, N. Watanabe and S. Ikegami, J. Chem. Soc., Chem. Commun., 1992, 1508.

5 (a) G. Stork and K. Nakatani, Tetrahedron Lett., 1988, 29, 2283; (b) M. P. Doyle, J. Taunton and H. Q. Pho, Tetrahedron Lett., 1989 30, 5397; (c) M. P. Doyle, V. Bagheri, M. M. Pearson and J. D. Edwards, Tetrahedron Lett., 1989, 30, 7001; (d) M. P. Doyle, L. J. Westrum, W. N. E. Wolthuis, M. M. See, W. P. Boone, V. Bagheri and M. M. Pearson, J. Am. Chem. Soc., 1993, 115, 958; (e) D. F.

Taber, M. J. Hennessy and J. P. Louey, J. Org. Chem., 1992, 57, 436; (f) A. Padwa, D. J. Austin, S. F. Hornbuckle, M. A. Semones, M. P. Doyle and M. N. Protopopova, J. Am. Chem. Soc., 1992, 114, 1874; (g) A. Padwa, D. J. Austin, A. T. Price, M. A. Semones, M. P. Doyle, M. N. Protopopova, W. R. Winchester and A. Tran, J. Am. Chem. Soc., 1993, 115, 8669.
6 M. C. Pirrung and J. A. Werner, J. Am. Chem. Soc., 1986, 108, 6060; E. J. Roskamp and C. R. Johnson, J. Am. Chem. Soc., 1986, 108, 6062; T. H. Eberlein, F. G. West and R. W. Tester, J. Org. Chem., 1992, 57, 3479; J. S. Clark, Tetrahedron Lett., 1992, 33, 6193; J. S. Clark, S. A. Krowiak and L. J. Street, Tetrahedron Lett., 1993, 34, 4385; F. G. West, T. H. Eberlein and R. W. Tester, J. Chem. Soc., Perkin Trans. 1, 1993, 2857; F. G. West, B. N. Naidu and R. W. Tester, J. Org. Chem., 1994, 59, 6892; M. C. Pirrung and A. T. Morehead, Jr., J. Am. Chem. Soc., 1994, 116, 8991 and references therein.
7 J. Adams, M.-A. Poupart, L. Grenier, C. Schaller, N. Ouimet and R. Frenette, Tetrahedron Lett., 1989, 30, 1749; D. M. Spero and J. Adams, Tetrahedron Lett., 1992, 33, 1143; P. Wang and J. Adams, J. Am. Chem. Soc., 1994, 116, 3296.

8 T. Yakura, D. Yoshida, A. Ueki, K. Nakao and M. Ikeda, Chem. Pharm. Bull., 1997, 45, 651.
9 A part of this work has appeared as a preliminary communication: T. Yakura, S. Yamada, A. Ueki and M. Ikeda, Synlett, 1997, 185.

10 T. Izawa and T. Mukaiyama, Chem. Lett., 1975, 161.
11 S. Hashimoto, N. Watanabe and S. Ikegami, Tetrahedron Lett., 1990, 31, 5173.
12 D. F. Taber, J. C. Amedio, Jr. and F. Gulino, J. Org. Chem., 1989, 54, 3474.

13 (a) K. Takahashi, M. Shiro and M. Kishi, J. Org. Chem., 1988, 53, 3098; (b) A. B. Smith, III, N. K. Dunlap and G. A. Sulikowski, Tetrahedron Lett., 1988, 29, 439; (c) K. Maruoka, I. Shimada, H. Imoto and H. Yamamoto, Synlett, 1994, 519 and references therein.
14 T. Tanaka, S. Kurozumi, T. Toru, S. Miura, M. Kobayashi and S. Ishimoto, Tetrahedron, 1976, 32, 1713.

15 D. F. Taber, R. J. Herr, S. K. Pack and J. M. Geremia, J. Org. Chem., 1996, 61, 2908.
16 T. Ye, M. A. McKervey, B. D. Brandes and M. P. Doyle, Tetrahedron Lett., 1994, 35, 7269.
17 D. F. Taber and R. E. Ruckle, Jr., Tetrahedron Lett., 1985, 26, 3059.
18 D. F. Taber, K. K. You and A. L. Rheingold, J. Am. Chem. Soc., 1996, 118, 547; D. F. Taber and Y. Song, J. Org. Chem., 1996, 61, 6706.

19 L. A. Gorthey, M. Vairamani and C. Djerassi, J. Org. Chem., 1985, 50, 4173; Y. Nagao, M. Goto, M. Ochiai and M. Shiro, Chem. Lett., 1990, 1503; Y. Nagao and M. Goto, Heterocycles, 1995, 41, 883; E. L. Eliel and H. Satici, J. Org. Chem., 1994, 59, 688.

20 D. F. Taber, K. You and Y. Song, J. Org. Chem., 1995, 60, 1093.

Paper 7/04102K
Received 11 th June 1997
Accepted 2nd September 1997

[^0]: \dagger tert-butyldimethylsilyloxy $=$ TBDMS

